TNFR Python Engine TNFR Glossary
Version 0.0.2 · DOI 10.5281/zenodo.17764207 · Updated 2025-11-30 Source theory/GLOSSARY.md

TNFR Glossary

Purpose: Operational quick reference for the Resonant Fractal Nature Theory (TNFR) v0.0.1
Status: Complete reference for current implementation
Version: November 29, 2025
Authority: Aligned with AGENTS.md as single source of truth

Scope: This glossary provides API-focused definitions for developers implementing TNFR networks. For complete theoretical foundations, see AGENTS.md and UNIFIED_GRAMMAR_RULES.md.


Core Variables

Primary Information Structure (EPI)

Code: G.nodes[n]['EPI'], ALIAS_EPI
Symbol: (\text{EPI}) or (E)
What: Coherent structural form of a node
Space: (B_{\text{EPI}}) (Banach space)
Rules: Modified only via structural operators, never directly
API: tnfr.structural operators
Math: §2.2 Banach Space B_EPI

Structural Frequency (νf)

Code: G.nodes[n]['vf'], ALIAS_VF
Symbol: (\nu_f)
Units: Hz_str (structural hertz)
Range: (\mathbb{R}^+) (positive reals; node collapse when (\nu_f \to 0))
What: Rate of structural reorganization
API: adapt_vf_by_coherence(), operators
Math: §3.2 Frequency Operator Ĵ

Internal Reorganization Operator (ΔNFR)

Code: G.nodes[n]['dnfr'], ALIAS_DNFR
Symbol: (\Delta\text{NFR})
What: Structural evolution gradient (drives reorganization)
Sign: Positive = expansion, Negative = contraction
Compute: Via default_compute_delta_nfr hook, automatic in step()
Math: §3.3 Reorganization Operator

Phase (φ, θ)

Code: G.nodes[n]['theta'], collect_theta_attr()
Symbol: (\theta) or (\phi)
Range: ([0, 2\pi)) or ([-\pi, \pi)) radians
What: Network synchrony parameter (relative timing)
Phase difference: (\Delta\theta = \theta_i - \theta_j)
API: Phase adaptation in dynamics
Math: §4 Nodal Equation

Total Coherence (C(t))

Code: compute_coherence(G) → float ∈ [0,1]
Symbol: (C(t))
Formula: (C(t) = \text{Tr}(\hat{C}\rho)) where (\hat{C}) is the coherence operator
Range: ([0, 1]) where 1 = perfect coherence, 0 = total fragmentation
What: Global network stability measure
Math: §3.1 Coherence Operator Ĉ

Coherence Operator (Ĉ)

Code: coherence_matrix(G) → (nodes, W)
Symbol: (\hat{C})
Matrix element: (w_{ij} \approx \langle i | \hat{C} | j \rangle)
Properties: Hermitian ((\hat{C}^\dagger = \hat{C})), positive semi-definite
What: Operator measuring structural stability between nodes
Math: §3.1 Theory + §3.1.1 Implementation

Sense Index (Si)

Code: G.nodes[n]['Si'], ALIAS_SI, compute_Si_node()
Symbol: (\text{Si}) (global) or (S_i) (node i)
Formula: (\text{Si} = \alpha \cdot \nu_{f,\text{norm}} + \beta \cdot (1 - \text{disp}\theta) + \gamma \cdot (1 - |\Delta\text{NFR}|{\text{norm}}))
Range: ([0, 1^+]) typically, higher = more stable reorganization
What: Capacity for stable structural reorganization
Weights: (\alpha + \beta + \gamma = 1) (default: 0.4, 0.3, 0.3)
Math: Mathematical Foundations - Metrics

Phase Gradient (|∇φ|) - CANONICAL

Code: compute_phase_gradient(G) → Dict[NodeId, float]
Symbol: (|\nabla\phi|(i))
Formula: (|\nabla\phi|(i) = \text{mean}_{j \in N(i)} |\theta_i - \theta_j|) (circular mean)
What: Local phase desynchronization / stress proxy field
Status: CANONICAL (Nov 2025)
Physics: Captures dynamics C(t) misses due to scaling invariance
Threshold: Classical bound |∇φ| < 0.2904 (harmonic oscillator stability)
API: tnfr.physics.fields.compute_phase_gradient()
Usage: Stress detection, local instability prediction
Documentation: docs/STRUCTURAL_FIELDS_TETRAD.md

Phase Curvature (K_φ) - CANONICAL

Code: compute_phase_curvature(G) → Dict[NodeId, float]
Symbol: (K_\phi(i))
Formula: (K_\phi = \text{wrap_angle}(\phi_i - \text{circular_mean}(\text{neighbors})))
What: Phase torsion and geometric confinement field
Status: CANONICAL (Nov 2025)
Physics: Flags mutation-prone loci via geometric constraints
Threshold: Classical bound |K_φ| < 2.8274 (90% of π theoretical maximum)
API: tnfr.physics.fields.compute_phase_curvature()
Usage: Geometric confinement monitoring, bifurcation prediction
Documentation: docs/STRUCTURAL_FIELDS_TETRAD.md

Coherence Length (ξ_C) - CANONICAL

Code: estimate_coherence_length(G) → float
Symbol: (\xi_C)
Formula: Spatial correlation function (C(r) = A \exp(-r/\xi_C))
What: Spatial correlation scale of local coherence
Status: CANONICAL (Nov 2025)
Physics: Critical phenomena and finite-size scaling analysis
Thresholds:
- Critical: ξ_C > 1.0 × diameter (finite-size scaling dominates)
- Watch: ξ_C > π ≈ 3.14 × mean_distance (RG scaling)
- Stable: ξ_C < mean_distance (bulk behavior)
API: tnfr.physics.fields.estimate_coherence_length()
Usage: Critical point detection, correlation analysis
Documentation: docs/STRUCTURAL_FIELDS_TETRAD.md


Structural Potential (Φ_s) - CANONICAL

Code: compute_structural_potential(G, alpha=2.0) → Dict[NodeId, float]
Symbol: (\Phi_s(i))
Formula: (\Phi_s(i) = \sum_{j \neq i} \frac{\Delta\text{NFR}_j}{d(i,j)^\alpha}) where (\alpha = 2)
What: Global structural potential field from ΔNFR distribution
Status: CANONICAL (Nov 2025)
Validation: 2,400+ experiments across 5 topologies
Physics: Passive equilibrium confinement landscape
Grammar: U6 STRUCTURAL POTENTIAL CONFINEMENT (Δ Φ_s < 2.0 escape threshold)
API: tnfr.physics.fields.compute_structural_potential()
Threshold: Classical bound |Φ_s| < 0.771 (von Koch fractal theory)
Documentation: docs/STRUCTURAL_FIELDS_TETRAD.md - src/tnfr/physics/fields.py - Implementation

Interpretation: - Φ_s minima = passive equilibrium states - Δ Φ_s < 2.0 = system confined (safe regime) - Δ Φ_s ≥ 2.0 = escape threshold (fragmentation risk) - Valid sequences: Δ Φ_s ≈ 0.6 (30% of threshold) - Violations: Δ Φ_s ≈ 3.9 (195% of threshold)

Mechanism: Grammar U1-U5 acts as passive confinement (NOT active attractor). Reduces escape drift by 85%.


The Nodal Equation

The fundamental equation of TNFR governs structural evolution:

[ \frac{\partial \text{EPI}}{\partial t} = \nu_f \cdot \Delta\text{NFR}(t) ]

Where: - (\frac{\partial \text{EPI}}{\partial t}): Rate of change of structure - (\nu_f): Structural frequency (reorganization rate) in Hz_str - (\Delta\text{NFR}(t)): Reorganization gradient (driving pressure)

Interpretation: - Structure changes only when both (\nu_f > 0) (capacity) and (\Delta\text{NFR} \neq 0) (pressure) exist - Rate of change is proportional to both frequency and gradient - When (\nu_f \to 0), evolution freezes (node collapse) - When (\Delta\text{NFR} = 0), structure reaches equilibrium

Implementation: See src/tnfr/dynamics/ for numerical integration
Theory: §4 The Nodal Equation


Structural Operators

The 13 canonical operators are the only way to modify nodes in TNFR. They're not arbitrary functions—they're resonant transformations with rigorous physics.

For complete specifications with physics derivations, contracts, and usage examples, see AGENTS.md § The 13 Canonical Operators.

Quick Reference

Symbol Name Physics Grammar Sets When to Use
AL Emission Creates EPI from vacuum via resonant emission Generator (U1a) Starting new patterns, initializing from EPI=0
EN Reception Captures and integrates incoming resonance - Information gathering, listening phase
IL Coherence Stabilizes form through negative feedback Stabilizer (U2) After changes, consolidation
OZ Dissonance Introduces controlled instability Destabilizer (U2), Bifurcation trigger (U4a), Closure (U1b) Breaking local optima, exploration
UM Coupling Creates structural links via phase synchronization Requires phase verification (U3) Network formation, connecting nodes
RA Resonance Amplifies and propagates patterns coherently Requires phase verification (U3) Pattern reinforcement, spreading coherence
SHA Silence Freezes evolution temporarily (νf → 0) Closure (U1b) Observation windows, pause for synchronization
VAL Expansion Increases structural complexity (dim ↑) Destabilizer (U2) Adding degrees of freedom
NUL Contraction Reduces structural complexity (dim ↓) - Simplification, dimensionality reduction
THOL Self-organization Spontaneous autopoietic pattern formation Stabilizer (U2), Handler (U4a), Transformer (U4b) Emergent organization, fractal structuring
ZHIR Mutation Phase transformation at threshold Bifurcation trigger (U4a), Transformer (U4b) Qualitative state changes
NAV Transition Regime shift, activates latent EPI Generator (U1a), Closure (U1b) Switching between attractor states
REMESH Recursivity Echoes structure across scales Generator (U1a), Closure (U1b) Multi-scale operations, memory

Operator Composition

Operators combine into sequences that implement complex behaviors:

Critical: All sequences must satisfy unified grammar (U1-U6).

API: - tnfr.structural.<OperatorName>() - Individual operators - run_sequence(G, node, ops) - Execute operator sequences - validate_sequence(ops) - Check grammar compliance

Grammar: See UNIFIED_GRAMMAR_RULES.md for complete rules
Detailed Specs: See AGENTS.md § The 13 Canonical Operators
Math: Mathematical Foundations §5


Canonical Invariants (Optimized Set)

From AGENTS.md - Optimized from 10 to 6 invariants based on mathematical derivation:

  1. Nodal Equation Integrity: EPI evolution only via ∂EPI/∂t = νf · ΔNFR(t)
  2. Phase-Coherent Coupling: |φᵢ - φⱼ| ≤ Δφ_max required for resonant operations
  3. Multi-Scale Fractality: Operational fractality and nested EPIs maintained
  4. Grammar Compliance: All operator sequences must satisfy U1-U6 validation
  5. Structural Metrology: Units consistency (νf in Hz_str) and telemetry exposure
  6. Reproducible Dynamics: Deterministic evolution with seed-based control

Quick Reference Tables

Variable Summary

Symbol Mathematical Code Attribute Units Range Type
(\text{EPI}) Primary Information Structure 'EPI' dimensionless (B_{\text{EPI}}) Coherent form
(\nu_f) Structural frequency 'vf' Hz_str (\mathbb{R}^+) Reorganization rate
(\Delta\text{NFR}) Reorganization operator 'dnfr' dimensionless (\mathbb{R}) Evolution gradient
(\theta), (\phi) Phase angle 'theta' radians ([0, 2\pi)) Network synchrony
(C(t)) Total coherence compute_coherence() dimensionless ([0, 1]) Global stability
(\text{Si}) Sense Index 'Si' dimensionless ([0, 1^+]) Reorganization stability

Common API Patterns

# Access node attributes
epi = G.nodes[node_id]['EPI']
vf = G.nodes[node_id]['vf']
theta = G.nodes[node_id]['theta']

# Compute metrics
C_t = compute_coherence(G)
nodes, W = coherence_matrix(G)
Si = compute_Si_node(G, node_id)

# Apply operators
from tnfr.structural import Emission, Coherence, Resonance
run_sequence(G, node_id, [Emission(), Coherence(), Resonance()])

# Evolution step
from tnfr.dynamics import step
step(G, use_Si=True, apply_glyphs=True)

Telemetry & Traces

Expose in telemetry: - C(t) - Total coherence - νf per node - Structural frequency - phase per node - Synchrony state - Si per node/network - Sense index - ΔNFR per node - Reorganization gradient - Operator history - Applied transformations - Events - Birth, bifurcation, collapse

API: tnfr.utils.callback_manager, history tracking in G.graph['_hist']


Domain Neutrality

TNFR is trans-scale and trans-domain: - Works from quantum to social systems - No built-in assumptions about specific domains - Structural operators apply universally

Guideline: Avoid domain-specific hard-coding in core engine


Reproducibility

All simulations must be: 1. Seeded: Explicit RNG seeds 2. Traceable: Log operators, parameters, states 3. Deterministic: Same seed → same trajectory

Tools: RNG scaffolding, structural history, telemetry caches


Unified Grammar Terms

Unified Grammar

The consolidated TNFR grammar system (U1-U6) that replaces the old C1-C3 and RC1-RC4 systems.

Source of Truth: UNIFIED_GRAMMAR_RULES.md
Quick Reference: AGENTS.md § Unified Grammar (U1-U6)
Implementation: src/tnfr/operators/grammar.py

Grammar Completeness: The canonical TNFR grammar consists of exactly six rules (U1-U6) and is COMPLETE. No additional rules (U7, U8, etc.) are required or planned. Extended dynamics (flux fields) add telemetry, not prescriptive constraints.

Six Canonical Constraints:

Rule Name Physics Basis Requirement Canonicity
U1 STRUCTURAL INITIATION & CLOSURE ∂EPI/∂t undefined at EPI=0 Start with generator {AL, NAV, REMESH}, End with closure {SHA, NAV, REMESH, OZ} ABSOLUTE
U2 CONVERGENCE & BOUNDEDNESS ∫νf·ΔNFR dt must converge If destabilizer {OZ, ZHIR, VAL}, then include stabilizer {IL, THOL} ABSOLUTE
U3 RESONANT COUPLING Phase compatibility required for resonance If coupling {UM, RA}, verify |φᵢ - φⱼ| ≤ Δφ_max ABSOLUTE
U4 BIFURCATION DYNAMICS ∂²EPI/∂t² > τ requires control Triggers {OZ, ZHIR} need handlers {THOL, IL}; Transformers need context STRONG
U5 MULTI-SCALE COHERENCE Hierarchical coupling + chain rule Nested EPIs require stabilizers {IL, THOL} at each level ABSOLUTE
U6 STRUCTURAL POTENTIAL CONFINEMENT Emergent Φ_s field: Φ_s(i) = Σ ΔNFR_j/d(i,j)² Monitor Δ Φ_s < 2.0 (telemetry-based safety) STRONG

Canonicity Levels: - ABSOLUTE: Mathematical necessity (direct consequence of nodal equation) - STRONG: Strong empirical/theoretical support (2,400+ experiments for U6)

Recent Updates: - U5 added 2025-11-10 (hierarchical REMESH stabilization) - U6 promoted to canonical 2025-11-11 (Φ_s field validation complete) - Replaces experimental "Temporal Ordering" research proposal - Validated across 5 topologies: ring, scale_free, small-world, tree, grid - Correlation: corr(Δ Φ_s, ΔC) = -0.822 (R² ≈ 0.68) - 2025-11-15: Grammar declared COMPLETE (U1-U6) - no U7/U8 required

Not Part of Grammar (telemetry/dynamics, NOT rules): - Structural Field Hexad: Tetrad (Φ_s, |∇φ|, K_φ, ξ_C) + Flux Pair (J_φ, ∇·J_ΔNFR) - "Proposed U7": Historical research direction (Temporal Ordering) - NOT canonical, NOT implemented

See Also: - UNIFIED_GRAMMAR_RULES.md - Complete derivations from physics - AGENTS.md § Unified Grammar - Quick reference - docs/grammar/U6_STRUCTURAL_POTENTIAL_CONFINEMENT.md - U6 complete specification - docs/grammar/U6_STRUCTURAL_FIELD_TETRAD.md - Why no U7/U8 - TNFR_FORCES_EMERGENCE.md § 14-15 - U6 validation details - src/tnfr/physics/fields.py - Φ_s implementation


Generator Operator

Operator that can create EPI from null/dormant states.

Set: GENERATORS = {emission, transition, recursivity}

Physics: Only these operators can initialize when EPI=0

Grammar Rule: U1a (STRUCTURAL INITIATION)

See: UNIFIED_GRAMMAR_RULES.md § U1a


Closure Operator

Operator that leaves system in coherent attractor state.

Set: CLOSURES = {silence, transition, recursivity, dissonance}

Physics: Terminal states preserving coherence

Grammar Rule: U1b (STRUCTURAL CLOSURE)

See: UNIFIED_GRAMMAR_RULES.md § U1b


Stabilizer Operator

Operator that provides negative feedback for convergence.

Set: STABILIZERS = {coherence, self_organization}

Physics: Ensures ∫νf·ΔNFR dt converges (bounded evolution)

Grammar Rule: U2 (CONVERGENCE & BOUNDEDNESS)

See: UNIFIED_GRAMMAR_RULES.md § U2


Destabilizer Operator

Operator that increases |ΔNFR| through positive feedback.

Set: DESTABILIZERS = {dissonance, mutation, expansion}

Physics: Without stabilizers, leads to divergence

Grammar Rule: U2 (CONVERGENCE & BOUNDEDNESS)

See: UNIFIED_GRAMMAR_RULES.md § U2


Coupling/Resonance Operator

Operators that require phase verification for valid coupling.

Set: COUPLING_RESONANCE = {coupling, resonance}

Physics: Resonance requires |φᵢ - φⱼ| ≤ Δφ_max

Grammar Rule: U3 (RESONANT COUPLING)

See: UNIFIED_GRAMMAR_RULES.md § U3


Universal Tetrahedral Correspondence

Theory: Central TNFR discovery establishing exact correspondence between four universal mathematical constants and four structural fields.

Mathematical Constants

Constant Value Role Domain
φ (Golden Ratio) 1.618034... Harmonic proportion Global/Harmonic
γ (Euler Constant) 0.577216... Harmonic growth rate Local/Dynamic
π (Pi) 3.141593... Geometric relations Geometric/Spatial
e (Euler Number) 2.718282... Exponential base Correlational/Temporal

Structural Field Correspondences

  1. φ ↔ Φ_s: Global harmonic confinement (Δ Φ_s < φ ≈ 1.618)
  2. γ ↔ |∇φ|: Local dynamic evolution (|∇φ| < γ/π ≈ 0.184)
  3. π ↔ K_φ: Geometric spatial constraints (|K_φ| < φ×π ≈ 5.083)
  4. e ↔ ξ_C: Correlational memory decay (C(r) ~ exp(-r/ξ_C))

Documentation: Structural Fields and Universal Tetrahedral Correspondence


Bifurcation Trigger

Operators that may trigger phase transitions.

Set: BIFURCATION_TRIGGERS = {dissonance, mutation}

Physics: Can cause ∂²EPI/∂t² > τ (bifurcation)

Grammar Rule: U4a (requires handlers)

See: UNIFIED_GRAMMAR_RULES.md § U4a


Bifurcation Handler

Operators that manage structural reorganization during bifurcations.

Set: BIFURCATION_HANDLERS = {self_organization, coherence}

Physics: Provide stability during phase transitions

Grammar Rule: U4a (BIFURCATION DYNAMICS)

See: UNIFIED_GRAMMAR_RULES.md § U4a


Transformer Operator

Operators that perform graduated destabilization for phase transitions.

Set: TRANSFORMERS = {mutation, self_organization}

Physics: Require recent destabilizer for threshold energy

Grammar Rule: U4b (requires context + prior IL for ZHIR)

See: UNIFIED_GRAMMAR_RULES.md § U4b


Core References (Essential)

Theory & Physics

Implementation & API

Grammar & Migration

Testing & Development

Cross-References and Documentation Hub

Primary Sources:
- AGENTS.md - Single source of truth for TNFR theory
- UNIFIED_GRAMMAR_RULES.md - Complete U1-U6 grammar derivations
- Structural Fields and Universal Tetrahedral Correspondence - Mathematical foundations

Implementation References:
- src/tnfr/physics/fields.py - Unified Structural Field Tetrad (Canonical)
- src/tnfr/dynamics/self_optimizing_engine.py - Intrinsic agency & auto-optimization
- docs/STRUCTURAL_FIELDS_TETRAD.md - Technical field specifications
- docs/grammar/PHYSICS_VERIFICATION.md - Grammar physics verification

Development Resources:
- src/tnfr/sdk/ - Simplified & Fluent API
- examples/ - Complete tutorial suite
- ARCHITECTURE.md - System design patterns


Molecular Chemistry from TNFR

Technical approach: Chemistry modeled via TNFR nodal dynamics without additional postulates.

Element Signatures

Code: tnfr.physics.signatures
What: Structural field-based classification of coherent patterns
Metrics: ξ_C, |∇φ|, |K_φ|, ΔΦ_s drift, stability classification
API: compute_element_signature(G), compute_au_like_signature(G)
Physics: Elements as coherent attractors in structural space

Au-like Patterns

Symbol: Au (from Latin 'aurum')
What: Complex coherent patterns exhibiting metallic properties
Criteria: Extended ξ_C, phase synchrony (|∇φ| < 2.0), evolution stability
Detection: compute_au_like_signature()["is_au_like"]
Physics: Optimal multi-scale coordination under nodal dynamics

Chemical Bonds (TNFR Redefinition)

Traditional: Force between atoms
TNFR: Phase synchronization with U3 verification: |φᵢ - φⱼ| ≤ Δφ_max
API: Coupling operators with phase compatibility check
Strength: Determined by phase coherence and coupling stability

Chemical Reactions (TNFR Redefinition)

Traditional: Collision/transition state theory
TNFR: Operator sequences: [Dissonance→Mutation→Coupling→Coherence]
Grammar: Must satisfy U1-U6 constraints
API: Sequence validation via grammar.py
Example: Bond formation = [OZ, ZHIR, UM, IL] sequence

Molecular Geometry (TNFR Redefinition)

Traditional: VSEPR, orbital hybridization
TNFR: ΔNFR minimization in coupled network topology
Prediction: Stable configurations minimize reorganization pressure
API: Network topology analysis after coupling sequences

Complete Theory: MOLECULAR_CHEMISTRY_FROM_NODAL_DYNAMICS.md
Implementation: Physics README § 9-10

Self-Optimizing Engine (v0.0.1)

Intrinsic Agency: The TNFR engine possesses self-optimization capabilities using unified field telemetry.

Core Components

TNFRSelfOptimizingEngine: src/tnfr/dynamics/self_optimizing_engine.py
Purpose: Closes feedback loop via unified field monitoring
Monitors: Complex Geometric Field (Ψ), Chirality (χ), Symmetry Breaking (𝒮), Coherence Coupling (𝒞)
Detects: Inefficiencies via tensor invariants (Energy Density ℰ, Topological Charge 𝒬)
Usage: engine = TNFRSelfOptimizingEngine(G); success, metrics = engine.step(node_id)

Auto-Optimization API

Fluent Integration: TNFRNetwork(G).focus(node).auto_optimize().execute()
Field Analysis: analyze_optimization_potential(G) - Mathematical structure analysis
Strategy Recommendations: recommend_field_optimization_strategy(G) - Optimization strategies
Automatic Execution: auto_optimize_field_computation(G) - Self-optimizing computation

Unified Field Framework (Nov 2025)

Mathematical Unification: Discovery of complex field relationships and conservation laws.

Complex Geometric Field (Ψ)

Definition: Ψ = K_φ + i·J_φ (unifies geometry + transport)
Evidence: r(K_φ, J_φ) = -0.854 to -0.997 (near-perfect anticorrelation)
API: compute_complex_geometric_field(G)
Usage: Unified geometry-transport analysis

Emergent Fields

Chirality (χ): χ = |∇φ|·K_φ - J_φ·J_ΔNFR - Handedness detection
Symmetry Breaking (𝒮): Phase transition indicator
Coherence Coupling (𝒞): Multi-scale connector field
API: compute_emergent_fields(G)

Tensor Invariants

Energy Density (ℰ): ℰ = Φ_s² + |∇φ|² + K_φ² + J_φ² + J_ΔNFR²
Topological Charge (𝒬): 𝒬 = |∇φ|·J_φ - K_φ·J_ΔNFR
Conservation Law: ∂ρ/∂t + ∇·𝐉 = 0
API: compute_tensor_invariants(G)

Unified Telemetry: compute_unified_telemetry(G) - Complete field suite


Contributing Guidelines

When adding new functionality:

  1. Verify theoretical foundation: Align with AGENTS.md physics
  2. Preserve canonical invariants: Follow optimized 6-invariant set
  3. Use established terminology: Reference this glossary for consistency
  4. Map to canonical operators: All functions must correspond to 13 canonical operators
  5. Validate grammar compliance: Ensure U1-U6 satisfaction
  6. Maintain English-only policy: All documentation in English for canonical terminology
  7. Write comprehensive tests: Cover invariants and operator contracts

Development Workflow:
1. Read AGENTS.md completely - SINGLE SOURCE OF TRUTH
2. Study UNIFIED_GRAMMAR_RULES.md for physics foundations
3. Follow CONTRIBUTING.md for detailed guidelines
4. Test with TESTING.md requirements

Version: 0.0.1 (November 29, 2025)
Status: Complete operational reference for current TNFR implementation
Language: English only (canonical documentation policy)